pFUSE-hlgG1e5-Fc1

Plasmid containing a human engineered IgG1 Fc region
Catalog \# pfc1-hg1e5

For research use only
 Version 20K05-MM

PRODUCT INFORMATION

Content:

- $20 \mu \mathrm{~g}$ of pFUSE-hIgG1e5-Fc1 plasmid provided as lyophilized DNA
- 1 ml of Zeocin ${ }^{\text {TM }}(100 \mathrm{mg} / \mathrm{ml})$

Storage and Stability:

- Product is shipped at room temperature.
- Lyophilized DNA should be stored at $-20^{\circ} \mathrm{C}$ and is stable 3 months.
- Resuspended DNA should be stored at $-20^{\circ} \mathrm{C}$ and is stable up to 1 year.
- Store Zeocin ${ }^{\mathrm{TM}}$ at $4^{\circ} \mathrm{C}$ or at $-20^{\circ} \mathrm{C}$. The expiry date is specified on the product label.

Quality control:

- Plasmid construct has been confirmed by restriction analysis and sequencing.
- Plasmid DNA was purified by ion exchange chromatography and lyophilized.

GENERAL PRODUCT USE

$\mathrm{pFUSE}-\mathrm{Fc}$ is a family of plasmid developed to facilitate the construction of Fc -fusion proteins by fusing the effector region of a protein to the Fc region of an immunoglobulin G (IgG).
pFUSE-Fc plasmids yield high levels of Fc-fusion proteins. The level of expression is usually in the $\mu \mathrm{g} / \mathrm{mL}$ range. They can be transfected in a variety of mammalian cells, including myeloma cell lines, CHO cells, monkey COS cells and human embryonic kidney (HEK)293 cells, cells that are commonly used in protein purification systems.
pFUSE-Fc plasmids allow the secretion of Fc-Fusion proteins. As FcFusion proteins are secreted, they can be easily detected in the supernatant of pFUSE-Fc-transfected cells by SDS-PAGE. Furthermore, functional domains can be identified by immunoblotting and ligand blotting.
Fc-Fusion proteins can be easily purified by single-step protein A or protein G affinity chromatography.
InvivoGen provides $\mathrm{pFUSE}-\mathrm{Fc}$ vectors featuring Fc regions from different species and isotypes. In humans, there are four isotypes: IgG1, $\mathrm{IgG} 2, \mathrm{IgG3}$ and IgG 4 . The Fc region mediates effector functions, such as antibody-dependent cellular cytotoxicity (ADCC) and complementdependent cytotoxicity (CDC). IgG isoforms exert different levels of effector functions increasing in the order of $\operatorname{IgG} 4<\operatorname{IgG} 2<\operatorname{IgG} 1 \leq \operatorname{IgG} 3$. Human IgG1 dispays high ADCC and CDC, and is the most suitable for therapeutic use against pathogens and cancer cells.
Under certain circumstances, for example when depletion of the target cell is undesirable, abrogating effector functions is required. On the contrary, in the case of antibodies intended for oncology use, increasing effector functions may improve their therapeutic activity ${ }^{1}$. Modifying effector functions can be achieved by engineering the Fc regions to either improve or reduce their binding to $\mathrm{Fc} \gamma \mathrm{Rs}$ or the complement factors. Amino acids substitutions have been made in the human IgG1 Fc region in order to increase or reduce its ADCC and CDC.

PLASMID FEATURES

- hIgG1e5-Fc (human IgG1 engineered Fc): The Fc region comprises the CH 2 and CH 3 domains of the IgG heavy chain and the hinge region. The hinge serves as a flexible spacer between the two parts of the Fc-Fusion protein, allowing each part of the molecule to function independently.
The triple Fc mutation S239D:A330L:I332E has been reported to enhance ADCC and Fc γ RIIIA binding ${ }^{2,3}$. pFUSE-hIgG1e5-Fcl contains the triple Fc mutation S239D:A330L:I332E.
- hEF1-HTLV prom is a composite promoter comprising the Elongation Factor-1 $\alpha(\mathrm{EF}-1 \alpha)$ core promoter ${ }^{4}$ and the R segment and part of the U5 sequence (R-U5') of the Human T-Cell Leukemia Virus (HTLV) Type 1 Long Terminal Repeat ${ }^{5}$ The EF-1 α promoter exhibits a strong activity and yields long lasting expression of a transgene in vivo. The R-U5' has been coupled to the EF- 1α core promoter to enhance stability of RNA.
- MCS: The multiple cloning site contains several restriction sites that are compatible with many other enzymes, thus facilitating cloning.
- SV40 pAn: the Simian Virus 40 late polyadenylation signal enables efficient cleavage and polyadenylation reactions resulting in high levels of steady-state mRNA ${ }^{6}$.
- ori: a minimal E. coli origin of replication to limit vector size, but with the same activity as the longer Ori.
- CMV enh / hFerL prom: This composite promoter combines the human cytomegalovirus immediate-early gene 1 enhancer and the core promoter of the human ferritin light chain gene. This ubiquitous promoter drives the expression of the Zeocin ${ }^{\text {ri4 }}$-resistance gene in mammalian cells.
- EM2KC is a bacterial promoter that enables the constitutive expression of the antibiotic resistance gene in E. coli. EM2KC is located within an intron and is spliced out in mammalian cells.
- Zeo: Resistance to Zeocin ${ }^{\text {TM }}$ is conferred by the Sh ble gene from Streptoalloteichus hindustanus The same resistance gene confers selection in both mammalian cells and E. coli.
- BGlo pAn: The human beta-globin 3^{\prime} UTR and polyadenylation sequence allows efficient arrest of the transgene transcription ${ }^{7}$.

1. Carter PJ., 2006. Potent antibody therapeutics by design. Nature Reviews Immunology. Advance online publication.
2. Lazar GA. et al., 2006. Engineered antibody Fc variants with enhanced effector function. PNAS 103(11): 4005-4010.
3. Ryan MC. et al., 2007.Antibody targeting of B-cell maturation antigen on malignant plasma cells. Mol. Cancer Ther., 6: 3009-3018.
4. Kim DW et al. 1990. Use of the human elongation factor 1 alpha promoter as a versatile and efficient expression system. 91(2):217-23.
5. Takebe Y. et al. 1988. SR alpha promoter: an efficient and versatile mammalian cDNA expression system composed of the simian virus 40 early promoter and the R-U5 segment of human T-cell leukemia virus type 1 long terminal repeat. Mol Cell Biol. 8(1):466-72. 6. Carswell S. \& Alwine JC. 1989. Efficiency of utilization of the simian virus 40 late polyadenylation site: effects of upstream sequences. Mol Cell Biol. 9(10):4248-58.
6. Yu J. \& Russell JE. 2001. Structural and functional analysis of an mRNP complex that mediates the high stability of human beta-globin mRNA. Mol Cell Biol. 21(17):5879-88.

METHODS

Plasmid resuspension

Quickly spin the tube containing the lyophilized plasmid to pellet the DNA. To obtain a plasmid solution at $1 \mu \mathrm{~g} / \mu \mathrm{l}$, resuspend the DNA in $20 \mu \mathrm{l}$ of sterile $\mathrm{H}_{2} \mathrm{O}$. Store resuspended plasmid at $-20^{\circ} \mathrm{C}$.

Plasmid amplification and cloning

Plasmid amplification and cloning can be performed in E. coli GT116 or in other commonly used laboratory E. coli strains, such as DH5a.

Zeocin ${ }^{\text {TM }}$ usage

This antibiotic can be used for E. coli at $25 \mu \mathrm{~g} / \mathrm{ml}$ in liquid or solid media and at $50-200 \mu \mathrm{~g} / \mathrm{ml}$ to select Zeocin ${ }^{\mathrm{TM}}$-resistant mammalian cells.

RELATED PRODUCTS

Product	Catalog Code
Zeocin $^{\mathrm{Tw}}$	ant-zn-1

E-mail: info@invivogen.com

2701 CTCAGCCCCCCGCCCCAAAGCAAGGGGAAGTCACGCGCCTGTAGCGCCAGCGTGTTGTGAAATGGGGGCTTGGGGGGGTTGGGGCCCTGACTAGTCAAAA 2801 CAAACTCCCATTGACGTCAATGGGGTGGAGACTTGGAAATCCCCGTGAGTCAAACCGCTATCCACGCCCATTGATGTACTGCCAAAACCGCATCATCATG

SnaBI (2917)
GTAATAGCGATGACTAATACGTAGATGTACTGCCAAGTAGGAAAGTCCCATAAGGTCATGTACTGGGCATAATGCCAGGCGGGCCATITACCGTCATTGA

NdeI (3022)
3001 CGTCAATAGGGGGCGTACTTGGCATATGATACACTTGATGTACTGCCAAGTGGGCAGTITACCGTAAATACTCCACCCATTGACGTCAATGGAAAGTCCC

3101 TATTGGCGTTACTATGGGAACATACGTCATTATTGACGTCAATGGGCGGGGGTCGTTGGGCGGTCAGCCAGGCGGGCCATITACCGTAAGTTATGTAACG

PacI (3208)
PstI (3201)
SdaI (3200) BspLU11I (3218)
3201 CCTGCAGGTTAATTAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCC
TGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGC

TCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTT

ApaLI (3532)
CGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCC

3601 GGTAAGACACGACITATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCT

3701 AACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAA

3801
CCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGA

EagI (3968)
PacI (3948) SwaI (3957) NotI (3967)
3901
CGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGGCTAGTTAATTAACATTTAAATCAGCGGCCGCAATAAAATATCTTTATTTTCATTAC

4001 ATCTGTGTGTTGGTTTTTTGTGTGAATCGTAACTAACATACGCTCTCCATCAAAACAAAACGAAACAAAACAAACTAGCAAAATAGGCTGTCCCCAGTGC

4101 AAGTGCAGGTGCCAGAACATTTCTCTATCGAA

